Teilen:

Aktuelles / Blog: #fehler

Was ist ein Bootstrap-Verfahren und wie wird es angewendet?

05.10.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Das Bootstrap-Verfahren ist eine statistische Methode, die verwendet wird, um Schätzungen über die Unsicherheit von Statistiken oder Parametern zu erhalten. Es basiert auf wiederholtem Ziehen von Stichproben aus einer gegebenen Datenmenge und dem Schätzen von Statistiken für jede dieser Stichproben. Es ermöglicht uns, Informationen über die Verteilung einer Statistik zu erhalten, ohne auf Annahmen über die zugrunde liegende Verteilung angewiesen zu sein.

Hier sind die Schritte, um das Bootstrap-Verfahren anzuwenden:

Datensatz: Gegeben ist ein Datensatz mit n Beobachtungen.

Stichproben ziehen: Mit Ersatz werden wiederholt Stichproben der Größe n aus dem ursprünglichen Datensatz gezogen. Das bedeutet, dass Beobachtungen mehrmals in verschiedenen Stichproben auftreten können, während andere möglicherweise gar nicht ausgewählt werden.

Statistik schätzen: Für jede der gezogenen Stichproben wird die gewünschte Statistik berechnet. Dies kann der Durchschnitt, die Standardabweichung, der Median oder jede andere beliebige Statistik sein, die auf den Daten basiert.

Verteilung erstellen: Die Ergebnisse der Statistiken aus den Stichproben bilden die Bootstrap-Verteilung. Diese Verteilung gibt uns Informationen über die Unsicherheit der Schätzung der Statistik.

Statistiken berechnen: Basierend auf der Bootstrap-Verteilung können verschiedene statistische Maße berechnet werden, z. B. Konfidenzintervalle, Standardfehler oder p-Werte.

Der Vorteil des Bootstrap-Verfahrens besteht darin, dass es robust gegenüber Annahmen über die Verteilung der Daten ist und auch bei komplexen Situationen angewendet werden kann, in denen analytische Methoden möglicherweise nicht verfügbar oder nicht anwendbar sind. Es ist jedoch wichtig zu beachten, dass das Bootstrap-Verfahren nicht alle möglichen Probleme lösen kann und sorgfältige Interpretation der Ergebnisse erfordert.

Gefällt mir (0)
Kommentar

Was sind robuste Statistiken und wie unterscheiden sie sich von nicht-robusten Statistiken?

29.09.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Robuste Statistiken sind Methoden der Datenanalyse, die widerstandsfähig gegenüber Ausreißern und Verzerrungen in den Daten sind. Im Gegensatz dazu sind nicht-robuste Statistiken anfällig für Ausreißer und können stark von abweichenden Werten beeinflusst werden.

Wenn in einem Datensatz Ausreißer vorhanden sind, handelt es sich um Werte, die deutlich von den anderen Datenpunkten abweichen. Diese Ausreißer können durch verschiedene Faktoren verursacht werden, wie Messfehler, ungewöhnliche Bedingungen oder echte aber seltene Ereignisse.

Nicht-robuste Statistiken verwenden oft Annahmen über die Verteilung der Daten, wie die Normalverteilung. Wenn diese Annahmen verletzt werden, können Ausreißer zu unzuverlässigen Ergebnissen führen. Beispielsweise können der Mittelwert und die Standardabweichung stark beeinflusst werden, wenn Ausreißer vorhanden sind.

Robuste Statistiken hingegen versuchen, die Auswirkungen von Ausreißern zu minimieren. Sie basieren auf Methoden, die weniger empfindlich gegenüber abweichenden Werten sind. Ein Beispiel für eine robuste Statistik ist der Median, der den mittleren Wert in einer sortierten Datenreihe darstellt. Der Median ist weniger anfällig für Ausreißer, da er nicht auf der genauen Position der Werte basiert, sondern nur auf ihrem relativen Rang.

Ein weiteres Beispiel für eine robuste Statistik ist der MAD (Median Absolute Deviation), der die Streuung der Daten um den Median misst. Der MAD verwendet den Median anstelle der Standardabweichung, um robustere Schätzungen der Streuung zu liefern.

Im Allgemeinen bieten robuste Statistiken den Vorteil, dass sie zuverlässigere Ergebnisse liefern, wenn Ausreißer oder Verzerrungen in den Daten vorliegen. Sie sind weniger anfällig für Verletzungen von Annahmen über die Verteilung der Daten und können in vielen Situationen eine bessere Wahl sein, insbesondere wenn die Daten unvollständig, ungenau oder nicht normalverteilt sind.

Gefällt mir (0)
Kommentar

Wie kann man die Modellgüte in der Regressionsanalyse bewerten?

29.09.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

In der Regressionsanalyse gibt es verschiedene Metriken, mit denen man die Güte des Modells bewerten kann. Hier sind einige gängige Methoden:

Bestimmtheitsmaß (R²): R² gibt an, wie gut die abhängige Variable durch die unabhängigen Variablen im Modell erklärt wird. Es liegt zwischen 0 und 1, wobei ein Wert von 1 darauf hindeutet, dass das Modell die beobachteten Daten perfekt erklärt. Ein niedrigerer Wert zeigt eine geringere Anpassung des Modells an die Daten an. Beachte jedoch, dass R² nicht immer eine zuverlässige Metrik ist, insbesondere wenn die Anzahl der unabhängigen Variablen hoch ist.

Adjustiertes Bestimmtheitsmaß (adjusted R²): Im Gegensatz zu R² berücksichtigt das angepasste R² die Anzahl der unabhängigen Variablen im Modell. Es ist daher hilfreich, wenn du Modelle vergleichen möchtest, die unterschiedlich viele unabhängige Variablen haben. Ein höherer Wert des adjustierten R² deutet auf eine bessere Anpassung des Modells an die Daten hin.

Residuenanalyse: Die Analyse der Residuen (oder Vorhersagefehler) kann ebenfalls Aufschluss über die Modellgüte geben. Du kannst die Verteilung der Residuen betrachten, um sicherzustellen, dass sie normal verteilt sind und keine systematischen Muster aufweisen. Systematische Muster in den Residuen könnten darauf hindeuten, dass das Modell bestimmte Aspekte der Daten nicht erfasst.

Standardfehler der Schätzer: Der Standardfehler der Schätzer gibt an, wie genau die Koeffizienten im Modell geschätzt werden. Ein niedriger Standardfehler deutet auf eine präzisere Schätzung hin.

F-Test und t-Test: Der F-Test kann verwendet werden, um zu prüfen, ob die aufgenommenen unabhängigen Variablen insgesamt einen statistisch signifikanten Einfluss auf die abhängige Variable haben. Der t-Test kann verwendet werden, um die statistische Signifikanz einzelner Koeffizienten zu überprüfen.

Es ist wichtig, mehrere Bewertungsmetriken zu verwenden und die Ergebnisse kritisch zu interpretieren, um ein umfassendes Verständnis der Modellgüte zu erhalten.

Gefällt mir (0)
Kommentar

Wie kann man die Stichprobengröße in der Statistik bestimmen?

28.09.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Die Bestimmung der Stichprobengröße in der Statistik hängt von verschiedenen Faktoren ab, wie dem gewünschten Konfidenzniveau, der erwarteten Standardabweichung, dem erwarteten Effekt und der gewünschten Genauigkeit der Schätzung. Es gibt verschiedene Ansätze zur Bestimmung der Stichprobengröße, von denen ich Ihnen einige vorstellen möchte:

Konfidenzniveau und Fehlertoleranz: Bestimmen Sie das gewünschte Konfidenzniveau (normalerweise 95% oder 99%) und die maximale Toleranz oder Genauigkeit, die Sie für Ihre Schätzung akzeptieren können. Diese Faktoren bestimmen die Breite des Konfidenzintervalls um Ihre Schätzung.

Standardabweichung: Schätzen Sie die Standardabweichung der Population oder verwenden Sie Schätzungen aus vorherigen Studien. Die Standardabweichung ist ein Maß für die Streuung der Daten um den Durchschnittswert.

Effektgröße: Wenn Sie eine bestimmte Effektgröße oder einen Unterschied zwischen den Gruppen untersuchen möchten, sollten Sie eine Schätzung des erwarteten Effekts verwenden. Dies könnte beispielsweise der erwartete Unterschied zwischen den Mittelwerten zweier Gruppen sein.

Auswahl des geeigneten statistischen Tests: Je nach Art der Untersuchung (z. B. t-Test, Chi-Quadrat-Test) und den gewählten Parametern verwenden Sie eine geeignete Formel zur Bestimmung der Stichprobengröße. Diese Formeln basieren auf statistischen Annahmen und sind spezifisch für jeden Test.

Verwenden Sie eine Stichprobengrößenberechnungssoftware: Es gibt verschiedene Online-Tools und Softwarepakete, die Ihnen bei der Berechnung der Stichprobengröße helfen können. Diese Tools berücksichtigen die oben genannten Faktoren und liefern Ihnen eine Schätzung der erforderlichen Stichprobengröße.

Es ist wichtig zu beachten, dass die Bestimmung der Stichprobengröße eine gewisse Unsicherheit beinhaltet, da Sie auf Schätzungen und Annahmen basiert. Es ist oft ratsam, eine größere Stichprobe zu wählen, um sicherzustellen, dass die Ergebnisse zuverlässig und repräsentativ sind.

Gefällt mir (0)
Kommentar

Was ist ein Ausreißer in der Statistik und wie kann man ihn erkennen?

27.09.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

In der Statistik bezeichnet der Begriff "Ausreißer" oder "Outlier" einen Datenpunkt, der sich signifikant von anderen Datenpunkten in einem Datensatz unterscheidet. Ausreißer können entweder aufgrund eines Messfehlers oder aufgrund eines tatsächlichen außergewöhnlichen Phänomens auftreten. Sie können potenziell einen erheblichen Einfluss auf statistische Analysen haben, da sie die berechneten Durchschnittswerte und andere Kennzahlen stark beeinflussen können.

Die Erkennung von Ausreißern ist ein wichtiger Schritt bei der Datenanalyse. Es gibt verschiedene Methoden, um Ausreißer zu identifizieren. Hier sind einige gängige Ansätze:

Visuelle Methoden: Diagramme wie Streudiagramme oder Boxplots können verwendet werden, um potenzielle Ausreißer zu identifizieren. Datenpunkte, die weit von der allgemeinen Verteilung der Daten entfernt sind, können als Ausreißer betrachtet werden.

Statistische Methoden: Es gibt verschiedene statistische Tests, die Ausreißer identifizieren können. Ein häufig verwendeter Ansatz ist die Z-Score-Methode, bei der der Abstand eines Datenpunkts vom Durchschnitt der Daten in Standardabweichungen gemessen wird. Datenpunkte, die einen Z-Score über einem bestimmten Schwellenwert haben, können als Ausreißer betrachtet werden.

Robuste Schätzer: Robuste Schätzverfahren wie der Median und das Interquartilsabstand (IQR) können helfen, Ausreißer zu identifizieren. Datenpunkte, die außerhalb des Bereichs von 1,5-fachen IQR von den Quartilen liegen, können als Ausreißer betrachtet werden.

Maschinelles Lernen: Fortgeschrittene maschinelle Lernalgorithmen können verwendet werden, um Ausreißer zu erkennen, indem sie Muster und Abweichungen in den Daten identifizieren. Ein Beispiel dafür ist das Clustering-Verfahren, bei dem Ausreißer als Datenpunkte betrachtet werden, die keiner bestimmten Gruppe oder Cluster zugeordnet werden können.

Es ist wichtig zu beachten, dass nicht jeder Ausreißer unbedingt fehlerhaft ist oder entfernt werden muss. Manchmal enthalten Ausreißer wichtige Informationen oder können auf interessante Phänomene hinweisen. Die Entscheidung, wie mit Ausreißern umgegangen werden sollte, hängt von der spezifischen Analyse und dem Kontext ab.

Gefällt mir (1)
Kommentar

Unser Angebot an Sie:

Medien- und PR-Datenbank 2024

Nur für kurze Zeit zum Sonderpreis: Die Medien- und PR-Datenbank mit 2024 mit Informationen zu mehr als 21.000 Zeitungs-, Magazin- & Hörfunk-Redaktionen uvm.

Newsletter

Abonnieren Sie unseren Newsletter und erhalten Sie aktuelle Neuigkeiten & Informationen zu Aktionen: