Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
Das Bootstrap-Verfahren ist eine statistische Methode, die verwendet wird, um Schätzungen über die Unsicherheit von Statistiken oder Parametern zu erhalten. Es basiert auf wiederholtem Ziehen von Stichproben aus einer gegebenen Datenmenge und dem Schätzen von Statistiken für jede dieser Stichproben. Es ermöglicht uns, Informationen über die Verteilung einer Statistik zu erhalten, ohne auf Annahmen über die zugrunde liegende Verteilung angewiesen zu sein.
Hier sind die Schritte, um das Bootstrap-Verfahren anzuwenden:
Datensatz: Gegeben ist ein Datensatz mit n Beobachtungen.
Stichproben ziehen: Mit Ersatz werden wiederholt Stichproben der Größe n aus dem ursprünglichen Datensatz gezogen. Das bedeutet, dass Beobachtungen mehrmals in verschiedenen Stichproben auftreten können, während andere möglicherweise gar nicht ausgewählt werden.
Statistik schätzen: Für jede der gezogenen Stichproben wird die gewünschte Statistik berechnet. Dies kann der Durchschnitt, die Standardabweichung, der Median oder jede andere beliebige Statistik sein, die auf den Daten basiert.
Verteilung erstellen: Die Ergebnisse der Statistiken aus den Stichproben bilden die Bootstrap-Verteilung. Diese Verteilung gibt uns Informationen über die Unsicherheit der Schätzung der Statistik.
Statistiken berechnen: Basierend auf der Bootstrap-Verteilung können verschiedene statistische Maße berechnet werden, z. B. Konfidenzintervalle, Standardfehler oder p-Werte.
Der Vorteil des Bootstrap-Verfahrens besteht darin, dass es robust gegenüber Annahmen über die Verteilung der Daten ist und auch bei komplexen Situationen angewendet werden kann, in denen analytische Methoden möglicherweise nicht verfügbar oder nicht anwendbar sind. Es ist jedoch wichtig zu beachten, dass das Bootstrap-Verfahren nicht alle möglichen Probleme lösen kann und sorgfältige Interpretation der Ergebnisse erfordert.