Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
Robuste Statistiken sind Methoden der Datenanalyse, die widerstandsfähig gegenüber Ausreißern und Verzerrungen in den Daten sind. Im Gegensatz dazu sind nicht-robuste Statistiken anfällig für Ausreißer und können stark von abweichenden Werten beeinflusst werden.
Wenn in einem Datensatz Ausreißer vorhanden sind, handelt es sich um Werte, die deutlich von den anderen Datenpunkten abweichen. Diese Ausreißer können durch verschiedene Faktoren verursacht werden, wie Messfehler, ungewöhnliche Bedingungen oder echte aber seltene Ereignisse.
Nicht-robuste Statistiken verwenden oft Annahmen über die Verteilung der Daten, wie die Normalverteilung. Wenn diese Annahmen verletzt werden, können Ausreißer zu unzuverlässigen Ergebnissen führen. Beispielsweise können der Mittelwert und die Standardabweichung stark beeinflusst werden, wenn Ausreißer vorhanden sind.
Robuste Statistiken hingegen versuchen, die Auswirkungen von Ausreißern zu minimieren. Sie basieren auf Methoden, die weniger empfindlich gegenüber abweichenden Werten sind. Ein Beispiel für eine robuste Statistik ist der Median, der den mittleren Wert in einer sortierten Datenreihe darstellt. Der Median ist weniger anfällig für Ausreißer, da er nicht auf der genauen Position der Werte basiert, sondern nur auf ihrem relativen Rang.
Ein weiteres Beispiel für eine robuste Statistik ist der MAD (Median Absolute Deviation), der die Streuung der Daten um den Median misst. Der MAD verwendet den Median anstelle der Standardabweichung, um robustere Schätzungen der Streuung zu liefern.
Im Allgemeinen bieten robuste Statistiken den Vorteil, dass sie zuverlässigere Ergebnisse liefern, wenn Ausreißer oder Verzerrungen in den Daten vorliegen. Sie sind weniger anfällig für Verletzungen von Annahmen über die Verteilung der Daten und können in vielen Situationen eine bessere Wahl sein, insbesondere wenn die Daten unvollständig, ungenau oder nicht normalverteilt sind.