This website is using cookies to ensure you get the best experience possible on our website.
More info: Privacy & Cookies, Imprint
The concept of the p-value is a statistical method used in hypothesis testing to assess the strength of evidence against a null hypothesis. The p-value indicates how likely the observed data is, or an even more extreme observation, given the null hypothesis.
Here is the general flow of interpreting a p-value:
Formulation of the null hypothesis (H₀) and the alternative hypothesis (H₁): The null hypothesis is the assumption that there is no effect or relationship between the variables examined. The alternative hypothesis states that an effect or relationship exists.
Perform statistical analysis: Data is collected and an appropriate statistical test method is applied to calculate the p-value.
P-value interpretation: The p-value ranges from 0 to 1. A typical threshold for significance is 0.05. If the p-value is less than 0.05, it is often considered statistically significant and the null hypothesis is rejected in favor of the alternative hypothesis. A small p-value indicates that the observed data would be unlikely if the null hypothesis were true.
Be careful with interpretation: A significant p-value does not automatically mean that an effect is practically important. It just means that if the null hypothesis is true, the probability of getting the observed data is relatively small. The practical meaning of the effect should always be considered in conjunction with the p-value and other statistical measures.
It is important to note that the p-value alone does not predict whether an alternative to the null hypothesis is true or false. It only indicates how strongly the available data speak against the null hypothesis. Therefore, interpreting a p-value requires some statistical knowledge and understanding of context.