Teilen:

Wissensdatenbank

Wie wird ein Chi-Quadrat-Test verwendet und interpretiert?

26.09.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Der Chi-Quadrat-Test ist ein statistisches Verfahren, das verwendet wird, um die Unabhängigkeit oder Assoziation zwischen zwei kategorialen Variablen zu überprüfen. Er vergleicht die beobachteten Häufigkeiten in einer Stichprobe mit den erwarteten Häufigkeiten, die erzielt würden, wenn die beiden Variablen unabhängig voneinander wären.

Der allgemeine Ablauf des Chi-Quadrat-Tests besteht aus mehreren Schritten:

Formulierung der Hypothesen:

Nullhypothese (H0): Es besteht keine Assoziation zwischen den Variablen.

Alternativhypothese (H1): Es besteht eine Assoziation zwischen den Variablen.

Sammeln der Daten: Erfassen von Daten zu den beiden kategorialen Variablen.

Konstruktion einer Kontingenztafel: Erstellen einer Tabelle, die die Häufigkeiten der Kombinationen beider Variablen enthält.

Berechnung des Chi-Quadrat-Werts: Der Chi-Quadrat-Wert wird berechnet, indem die beobachteten Häufigkeiten mit den erwarteten Häufigkeiten verglichen werden. Die erwarteten Häufigkeiten werden anhand der Annahme der Unabhängigkeit berechnet.

Bestimmung der Freiheitsgrade: Die Freiheitsgrade werden basierend auf der Größe der Kontingenztafel berechnet. Für eine 2x2-Tabelle beträgt die Anzahl der Freiheitsgrade (Anzahl der Zeilen - 1) * (Anzahl der Spalten - 1).

Bestimmung der Signifikanz: Der Chi-Quadrat-Wert wird mit einer Chi-Quadrat-Verteilung und den Freiheitsgraden verglichen, um die statistische Signifikanz zu bestimmen. Dies kann anhand einer Signifikanzschwelle (z. B. p < 0,05) erfolgen.

Interpretation der Ergebnisse: Wenn der berechnete Chi-Quadrat-Wert statistisch signifikant ist (d. h. p-Wert unter der festgelegten Signifikanzschwelle), wird die Nullhypothese abgelehnt. Dies deutet darauf hin, dass eine Assoziation zwischen den Variablen besteht. Wenn der berechnete Chi-Quadrat-Wert nicht signifikant ist, kann die Nullhypothese beibehalten werden, was darauf hinweist, dass keine ausreichenden Beweise für eine Assoziation vorliegen.

Es ist wichtig zu beachten, dass der Chi-Quadrat-Test die Assoziation zwischen Variablen aufzeigt, aber keine Aussage über Kausalität macht. Es gibt auch verschiedene Varianten des Chi-Quadrat-Tests, wie z. B. den Anpassungstest oder den Test auf Unabhängigkeit, die je nach Fragestellung und Art der Daten verwendet werden können.

Gefällt mir (0)
Kommentar

Unser Angebot an Sie:

Medien- und PR-Datenbank 2024

Nur für kurze Zeit zum Sonderpreis: Die Medien- und PR-Datenbank mit 2024 mit Informationen zu mehr als 21.000 Zeitungs-, Magazin- & Hörfunk-Redaktionen uvm.

Newsletter

Abonnieren Sie unseren Newsletter und erhalten Sie aktuelle Neuigkeiten & Informationen zu Aktionen: