Teilen:

Wissensdatenbank

Wie werden KI-Modelle trainiert?

20.10.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

KI-Modelle werden in der Regel durch einen Prozess des maschinellen Lernens trainiert. Es gibt verschiedene Techniken und Algorithmen, die dabei verwendet werden können, aber im Allgemeinen besteht der Trainingsprozess aus folgenden Schritten:

Datensammlung: Um ein KI-Modell zu trainieren, werden große Mengen an Trainingsdaten benötigt. Diese Daten dienen als Grundlage für das Modell, um Muster und Zusammenhänge zu lernen. Die Daten können aus verschiedenen Quellen stammen, wie z.B. aus öffentlich verfügbaren Datensätzen oder speziell erstellten Datensätzen.

Datenbereinigung und Vorverarbeitung: Die gesammelten Daten müssen oft gereinigt und vorverarbeitet werden, um sie auf ein einheitliches Format zu bringen und Rauschen oder Ausreißer zu entfernen. Dies kann Schritte wie das Entfernen fehlender Werte, die Normalisierung der Daten oder das Reduzieren von Dimensionen umfassen.

Modellauswahl: Je nach Art des Problems und der verfügbaren Daten werden verschiedene KI-Modelle in Betracht gezogen. Es gibt verschiedene Arten von Modellen wie neuronale Netzwerke, Entscheidungsbäume, Support Vector Machines usw. Die Auswahl des geeigneten Modells hängt von den Anforderungen des Problems und der verfügbaren Ressourcen ab.

Modelltraining: Beim Training wird das ausgewählte Modell mit den bereinigten Trainingsdaten gefüttert. Das Modell passt seine Parameter an, um die gegebenen Daten bestmöglich zu repräsentieren und Muster zu lernen. Dieser Prozess wird durch Optimierungsalgorithmen wie Gradientenabstieg oder Backpropagation ermöglicht, die die Fehler zwischen den vom Modell vorhergesagten Werten und den tatsächlichen Werten minimieren.

Validierung und Optimierung: Nach dem Training wird das Modell mit Validierungsdaten getestet, um seine Leistung zu bewerten. Es können Metriken wie Genauigkeit, Präzision, Rückruf oder F1-Score verwendet werden, um die Leistung des Modells zu quantifizieren. Basierend auf den Ergebnissen können Anpassungen am Modell vorgenommen werden, um seine Leistung zu verbessern. Dieser Prozess wird als Optimierung bezeichnet.

Evaluierung und Bereitstellung: Sobald das Modell zufriedenstellende Leistung auf den Validierungsdaten zeigt, wird es auf Testdaten evaluiert, um seine allgemeine Leistungsfähigkeit zu überprüfen. Wenn das Modell erfolgreich validiert wurde, kann es für den Einsatz in der Praxis bereitgestellt werden.

Es ist wichtig zu beachten, dass der Trainingsprozess von KI-Modellen komplex sein kann und viel Zeit, Rechenressourcen und Fachwissen erfordert. Zudem sollte beachtet werden, dass das Training von KI-Modellen auch ethische Aspekte beinhaltet, wie die Auswahl und Verwendung von Daten, um Vorurteile und Diskriminierung zu vermeiden.

Gefällt mir (0)
Kommentar

Unser Angebot an Sie:

Medien- und PR-Datenbank 2024

Nur für kurze Zeit zum Sonderpreis: Die Medien- und PR-Datenbank mit 2024 mit Informationen zu mehr als 21.000 Zeitungs-, Magazin- & Hörfunk-Redaktionen uvm.

Newsletter

Abonnieren Sie unseren Newsletter und erhalten Sie aktuelle Neuigkeiten & Informationen zu Aktionen: