Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
Ein "No-Go" bei der Datenanalyse bezieht sich auf eine Praxis oder einen Ansatz, der allgemein als unangemessen, unethisch oder unzuverlässig betrachtet wird. Hier sind einige Beispiele für No-Gos bei der Datenanalyse:
Fehlende Datensicherheit: Wenn Datenanalysten nicht ausreichende Maßnahmen ergreifen, um die Sicherheit sensibler Daten zu gewährleisten, kann dies zu Datenschutzverletzungen und Vertrauensverlust führen.
Manipulation von Daten: Die bewusste Manipulation von Daten, um bestimmte Ergebnisse oder Schlussfolgerungen zu erzielen, ist ein schwerwiegender Verstoß gegen die Integrität der Datenanalyse.
Ignorieren von Bias: Wenn bei der Datenanalyse systematische Vorurteile oder Voreingenommenheiten ignoriert werden, können die Ergebnisse verzerrt und unzuverlässig sein.
Mangelnde Transparenz: Wenn die Methoden, Algorithmen oder Annahmen, die bei der Datenanalyse verwendet werden, nicht transparent offengelegt werden, kann dies das Vertrauen in die Ergebnisse beeinträchtigen.
Überschreitung der Kompetenzen: Wenn Datenanalysten außerhalb ihres Fachgebiets agieren und komplexe Analysen durchführen, für die sie nicht ausreichend qualifiziert sind, kann dies zu fehlerhaften Ergebnissen führen.
Unangemessene Interpretation: Eine ungenaue oder unverhältnismäßige Interpretation der Daten kann zu falschen Schlussfolgerungen führen und die Bedeutung der Ergebnisse verzerren.
Mangelnde Validierung: Wenn Datenanalysten ihre Ergebnisse nicht ausreichend überprüfen oder validieren, können Fehler oder Ungenauigkeiten unentdeckt bleiben.
Es ist wichtig, dass Datenanalysten ethische Standards einhalten, die Datenintegrität gewährleisten und verantwortungsbewusste Praktiken fördern.