Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
Künstliche Intelligenz (KI) und maschinelles Lernen (ML) sind verwandte Konzepte, haben aber unterschiedliche Bedeutungen.
Künstliche Intelligenz:
Künstliche Intelligenz bezieht sich auf den breiteren Bereich der Entwicklung intelligenter Maschinen oder Systeme, die Aufgaben ausführen können, die normalerweise menschliche Intelligenz erfordern. Bei der künstlichen Intelligenz geht es um die Entwicklung von Algorithmen und Systemen, die ihre Umgebung wahrnehmen, denken, lernen und Entscheidungen treffen können. Sie zielt darauf ab, menschliche Intelligenz in Maschinen nachzubilden oder zu simulieren.
Maschinelles Lernen:
Maschinelles Lernen ist ein Teilbereich oder eine Anwendung der KI. Es umfasst die Entwicklung von Algorithmen, die es Computern ermöglichen, aus Daten zu lernen und sich zu verbessern, ohne explizit programmiert zu werden. Anstatt explizit für bestimmte Aufgaben programmiert zu werden, lernen Algorithmen für maschinelles Lernen aus Mustern und Beispielen in den Daten. Sie erkennen und lernen automatisch aus Mustern, treffen Vorhersagen oder ergreifen Maßnahmen auf der Grundlage der Daten, für die sie trainiert wurden.
Vereinfacht ausgedrückt, ist KI das umfassendere Konzept, das die Idee der Schaffung intelligenter Maschinen beinhaltet, während maschinelles Lernen ein spezifischer Ansatz oder eine Technik innerhalb der KI ist, die es Maschinen ermöglicht, aus Daten zu lernen und ihre Leistung im Laufe der Zeit zu verbessern.
Zusammengefasst:
KI ist der übergreifende Bereich, der darauf abzielt, intelligente Maschinen zu entwickeln.
Maschinelles Lernen ist ein Teilbereich der KI, der sich auf Algorithmen und Techniken konzentriert, die es Maschinen ermöglichen, aus Daten zu lernen und ihre Leistung zu verbessern. Das maschinelle Lernen ist eine der Möglichkeiten zur Entwicklung von KI-Systemen, aber es gibt auch andere Ansätze wie regelbasierte Systeme, Expertensysteme und Deep Learning, das ein Teilgebiet des maschinellen Lernens ist.