Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
In der Statistik bezieht sich das Konzept der Robustheit auf die Fähigkeit einer statistischen Methode, stabile und zuverlässige Ergebnisse zu liefern, auch wenn die zugrunde liegenden Annahmen verletzt sind oder die Daten Ausreißer enthalten. Robuste Methoden sind weniger anfällig für extreme Werte oder Verletzungen der Annahmen und liefern robuste Schätzungen oder Testergebnisse.
Die Bewertung der Robustheit einer statistischen Methode erfolgt normalerweise durch Vergleich mit anderen Methoden oder durch Simulationsexperimente. Es gibt verschiedene Kriterien, die bei der Beurteilung der Robustheit berücksichtigt werden:
Einflussanalyse: Die Methode wird daraufhin überprüft, wie stark einzelne Beobachtungen oder Ausreißer die Ergebnisse beeinflussen. Eine robuste Methode sollte relativ unempfindlich gegenüber einzelnen Beobachtungen sein, die stark von der übrigen Stichprobe abweichen.
Vergleich mit nicht-robusten Methoden: Die robuste Methode wird mit nicht-robusten Methoden verglichen, um zu zeigen, dass sie unter Verletzung der Annahmen oder in Gegenwart von Ausreißern bessere oder vergleichbare Ergebnisse liefert.
Simulationsstudien: Durch Simulation von Daten mit bekannten Eigenschaften, wie zum Beispiel Ausreißern oder Verletzung der Annahmen, kann die Robustheit einer Methode bewertet werden. Die Ergebnisse der Methode werden mit den wahren Werten oder den Ergebnissen anderer Methoden verglichen, um ihre Leistung zu beurteilen.
Theoretische Analysen: In einigen Fällen können mathematische oder theoretische Analysen verwendet werden, um die Robustheit einer Methode zu bewerten. Dies beinhaltet oft die Untersuchung der Einflüsse von Datenverletzungen auf die Eigenschaften der Methode.
Es ist wichtig anzumerken, dass Robustheit keine absolute Eigenschaft ist. Eine Methode kann robuster sein als andere, aber möglicherweise immer noch anfällig für bestimmte Arten von Verletzungen oder Ausreißern. Daher ist es ratsam, verschiedene Aspekte der Robustheit zu berücksichtigen, um die angemessene Methode für eine bestimmte statistische Analyse auszuwählen.