Diese Website setzt Cookies ein, um das Angebot für Sie zu personalisieren und Ihr Erlebnis zu verbessern.
Weitere Informationen: Datenschutzerklärung & Cookies, Impressum
Die lineare Regression ist eine statistische Methode, die dazu verwendet wird, die Beziehung zwischen einer abhängigen Variable (Y) und einer oder mehreren unabhängigen Variablen (X) zu modellieren. Das Ziel besteht darin, eine lineare Gleichung zu finden, die die bestmögliche Anpassung an die beobachteten Daten bietet.
Form der linearen Gleichung:
Die allgemeine Form einer einfachen linearen Regression lautet: \[ Y = \beta_0 + \beta_1X + \varepsilon \]
wo \( \beta_0 \) der y-Achsenabschnitt, \( \beta_1 \) der Regressionskoeffizient (Steigung) und \( \varepsilon \) der Fehlerterm sind.
Regressionskoeffizient (Steigung):
Der Regressionskoeffizient (\( \beta_1 \)) gibt die Änderung der abhängigen Variable für eine Einheit Zunahme der unabhängigen Variable an. Ein positiver Koeffizient zeigt eine positive Korrelation an, während ein negativer Koeffizient auf eine negative Korrelation hinweist.
Weitere Informationen:
Beispiel:
Angenommen, wir untersuchen die Beziehung zwischen der Anzahl der Stunden, die ein Student studiert (X), und seinen Noten in einem Fach (Y). Eine lineare Regression könnte uns helfen, eine Gleichung zu finden, die diese Beziehung modelliert.