Teilen:

Aktuelles / Blog: #python

Data Science: Welche Tools und Methoden Sie kennen sollten

22.12.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

1. Python: Python ist eine der am häufigsten verwendeten Programmiersprachen für Data Science. Es ist eine leistungsstarke Open-Source-Sprache, die für viele Anwendungen, einschließlich maschinellem Lernen, verwendet werden kann.

2. R: R ist eine Programmiersprache, die für Statistik, Data Mining und Visualisierung verwendet wird. Es ist ebenfalls eine Open-Source-Sprache, die leicht zu lernen ist und viele Anwendungen für Data Science bietet.

3. SQL: SQL ist eine Standard-Programmiersprache, die für die Abfrage und Manipulation von Datenbanken verwendet wird. Es ist ein unverzichtbares Tool für Data Scientists, da es eine Möglichkeit bietet, Daten zu speichern und abzurufen.

4. Machine-Learning-Frameworks: Machine-Learning-Frameworks wie TensorFlow, PyTorch und Scikit-Learn stellen Entwicklern umfangreiche Bibliotheken für das maschinelle Lernen zur Verfügung. Diese Frameworks können verwendet werden, um Algorithmen zu erstellen, die auf Daten lernen, um spezifische Aufgaben zu erledigen.

5. Data Visualization Tools: Data Visualization Tools wie Tableau, Matplotlib und Seaborn helfen Data Scientists, Daten ansprechend und informativ darzustellen. Mit den richtigen Tools können Daten leicht interpretiert werden, um Trends und andere wichtige Erkenntnisse zu entdecken.

Gefällt mir (0)
Kommentar

Microsoft Excel revolutioniert die Datenanalyse mit Python-Integration

24.08.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

In einer bahnbrechenden Ankündigung hat Microsoft Excel ein neues Kapitel in der Datenanalyse aufgeschlagen, indem es die Python-Integration in seine Plattform einführt. Dieser bedeutsame Schritt vereint die Leistungsfähigkeit der analytischen Fähigkeiten von Python mit der Vielseitigkeit der Datenorganisation und -visualisierungstools von Excel. Mit der Einführung von Python in Excel können Benutzer Python- und Excel-Analysen nahtlos in derselben Arbeitsmappe zusammenführen und damit eine neue Ära der Effizienz und Raffinesse in der Datenanalyse einläuten.

Eine Fusion von Python und Excel: Die nächste Evolution in der Datenanalyse

Seit seinen Anfängen hat Microsoft Excel eine Vorreiterrolle bei der Transformation von Datenverarbeitung, -analyse und -visualisierung gespielt. Jetzt macht Microsoft mit Python in Excel einen weiteren Sprung nach vorn und bietet eine öffentliche Vorschau dieser bahnbrechenden Integration an. Die Synergie zwischen diesen beiden führenden Datenanbietern ermöglicht es den Benutzern, Python-Code direkt in Excel-Zellen einzugeben, wobei die Berechnungen in der Microsoft Cloud ausgeführt werden. Die Ergebnisse, einschließlich der Diagramme und Visualisierungen, werden dann nahtlos in das Excel-Arbeitsblatt integriert, ohne dass ein kompliziertes Setup erforderlich ist.

Der erste Rollout von Python in Excel ist für Teilnehmer des Microsoft 365 Insider-Programms verfügbar, die über den Beta-Kanal in Excel für Windows darauf zugreifen können.

Enthüllung der besonderen Funktionen von Python in Excel

Auf die Bedürfnisse von Analysten zugeschnitten: Die vertrauten Tools von Excel wie Formeln, Diagramme und PivotTables werden von Millionen von Menschen zur Datenanalyse genutzt. Jetzt geht Python in Excel noch einen Schritt weiter und integriert Python direkt in das Excel-Gitter. Mit der neuen Funktion PY können Benutzer Python-Code direkt in Excel-Zellen eingeben und so neben den bewährten Excel-Funktionen auch auf leistungsstarke Python-Analysen zugreifen.

Die Entfesselung der Leistungsfähigkeit von Python über Anaconda: Python in Excel nutzt Anaconda Distribution for Python, ein Repository, das von unzähligen Datenexperten weltweit genutzt wird. Diese Integration erleichtert den Zugriff auf beliebte Python-Bibliotheken wie pandas, Matplotlib und scikit-learn und erweitert so die in Excel verfügbaren analytischen Fähigkeiten.

Sicherheit und Cloud-Kompatibilität: Python in Excel arbeitet sicher in der Microsoft-Cloud-Umgebung und nutzt Azure Container Instances für die isolierte Ausführung. Die Integration gewährleistet den Datenschutz, indem sie die Kenntnis des Python-Codes von den Identitäten der Benutzer einschränkt und die Arbeitsmappendaten isoliert und sicher hält.

Teamzusammenarbeit leicht gemacht: Mit Python in Excel steht die Zusammenarbeit im Mittelpunkt. Teams können mit Python-gestützten Analysen interagieren und diese aktualisieren, ohne sich mit komplexen Installationen oder der Verwaltung von Bibliotheken auseinandersetzen zu müssen. Kollaborationstools wie Microsoft Teams und Outlook ermöglichen nahtlos gemeinsame Arbeitsmappen und fördern eine kohärente Arbeitsumgebung.

Microsoft's Engagement für Python: Die Partnerschaft zwischen verschiedenen Microsoft-Teams unterstreicht das Engagement des Unternehmens, die Zugänglichkeit und Integration von Python zu verbessern. Guido van Rossum, der Schöpfer von Python und Microsoft Distinguished Engineer, lobt diesen Meilenstein und unterstreicht den Geist der Zusammenarbeit.

Neue Wege in der Datenanalyse erschließen

Python in Excel eröffnet eine Fülle von Möglichkeiten und verwandelt Excel von einem traditionellen Tabellenkalkulationsprogramm in ein fortschrittliches analytisches Kraftwerk. Fortgeschrittene Visualisierungen unter Verwendung der bekannten Python-Bibliotheken für Diagramme, maschinelles Lernen, prädiktive Analysen und sogar Datenbereinigung sind jetzt für Excel-Benutzer möglich. Diese Integration verbessert die Arbeitsabläufe in verschiedenen Bereichen, von der Bildung über die Unternehmensanalyse bis hin zur Finanzanalyse.

Der Weg in die Zukunft

Mit dem Debüt von Python in Excel durch die Public Preview für das Microsoft 365 Insiders Programm ist die Zukunft vielversprechend. Die Erwartungen sind hoch, da Microsoft an der Verfeinerung der Integration, der Erweiterung der Bearbeitungsmöglichkeiten, dem Fehlermanagement, der Dokumentation und vielem mehr arbeitet. Das Potenzial der Integration, die Datenanalyse und -zusammenarbeit zu revolutionieren, sorgt dafür, dass ihre Entwicklung aufmerksam verfolgt wird.

In dieser Ära der datengesteuerten Entscheidungsfindung läutet Microsofts Python in Excel eine transformative Ära ein, in der sich zwei Giganten, Python und Excel, zusammenschließen, um Analysten und Unternehmen weltweit zu unterstützen. Die Verschmelzung dieser beiden Plattformen eröffnet eine Zukunft der beispiellosen Datenerforschung, -analyse und -gewinnung.

Gefällt mir (0)
Kommentar

Wie kann ich mir mit ChatGPT oder Python ein passives Einkommen aufbauen?

17.04.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Python ist eine Programmiersprache, die bei der Erstellung von Software und Anwendungen helfen kann, die dazu beitragen können, ein passives Einkommen zu erzielen.

Hier sind einige Möglichkeiten, wie Sie mit Python ein passives Einkommen aufbauen können:

Erstellung von Apps und Webanwendungen: Sie können Python verwenden, um mobile Apps oder Webanwendungen zu erstellen, die Sie auf dem Markt verkaufen oder lizenzieren können. Sie können auch In-App-Käufe und Abonnement-Modelle in Ihre Apps und Anwendungen integrieren, um wiederkehrende Einnahmen zu generieren.

Erstellung von automatisierten Trading-Bots: Sie können Python verwenden, um automatisierte Trading-Bots für verschiedene Finanzmärkte und Kryptowährungen zu erstellen. Diese Bots können Trades auf der Grundlage von Algorithmen und Marktanalysen automatisch ausführen, um passive Einnahmen zu generieren.

Erstellung von E-Commerce-Plattformen: Sie können Python verwenden, um E-Commerce-Plattformen zu erstellen, die den Verkauf von physischen oder digitalen Produkten erleichtern. Sie können auch Affiliate-Programme in Ihre Plattform integrieren, um zusätzliche Einnahmen durch die Vermittlung von Verkäufen zu erzielen.

Erstellung von Online-Kursen und Tutorials: Sie können Python verwenden, um Online-Kurse und Tutorials zu erstellen, die Ihnen helfen, Ihre Fähigkeiten und Kenntnisse im Bereich Python oder anderen relevanten Themen zu teilen. Sie können diese Kurse und Tutorials auf Plattformen wie Udemy oder Skillshare verkaufen und dabei ein passives Einkommen erzielen.

Erstellung von Datenanalyse- und Visualisierungs-Tools: Sie können Python verwenden, um Datenanalyse- und Visualisierungstools zu erstellen, die anderen Unternehmen und Organisationen dabei helfen, Daten zu analysieren und zu verstehen. Sie können diese Tools auf dem Markt verkaufen oder als SaaS-Plattformen anbieten, um wiederkehrende Einnahmen zu erzielen.

Es gibt viele Möglichkeiten, wie Sie mit Python ein passives Einkommen aufbauen können. Sie müssen jedoch Zeit und Ressourcen investieren, um Ihre Fähigkeiten und Kenntnisse im Bereich der Programmierung zu verbessern und wertvolle Anwendungen und Tools zu erstellen, die anderen helfen, ihre Probleme zu lösen und ihre Ziele zu erreichen.

Gefällt mir (0)
Kommentar

Data Science Jobs - Wie und wo klappt der Einstieg?

07.04.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Der Einstieg in eine Karriere in Data Science kann je nach Hintergrund und Erfahrung unterschiedlich sein. Hier sind einige Möglichkeiten, um in die Branche einzusteigen:

Abschluss in einem relevanten Bereich: Ein Bachelor- oder Master-Abschluss in Informatik, Statistik, Mathematik, Physik oder einem anderen verwandten Bereich kann ein guter Ausgangspunkt für eine Karriere in Data Science sein.

Datenanalyse- und Programmierkenntnisse: Erfahrung in der Datenanalyse, Programmierung und Arbeit mit statistischen Methoden sind unerlässlich für eine Karriere in Data Science. Es ist ratsam, Erfahrungen in der Arbeit mit Python, R, SQL und anderen relevanten Tools und Technologien zu sammeln.

Praktika und Freiwilligenarbeit: Praktika und Freiwilligenarbeit in Data-Science-Projekten oder bei Unternehmen können dazu beitragen, praktische Erfahrung und Fähigkeiten zu sammeln.

Online-Kurse und Zertifizierungen: Online-Kurse und Zertifizierungen in Data Science und verwandten Bereichen, wie Data Mining, maschinelles Lernen und künstliche Intelligenz, können dazu beitragen, Kenntnisse und Fähigkeiten zu erwerben.

Netzwerken: Kontakte zu Fachleuten und anderen Personen in der Branche können dazu beitragen, potenzielle Jobmöglichkeiten zu finden und Informationen über die Branche zu sammeln.

Einige der häufigsten Einstiegspositionen in Data Science sind Datenanalyst, Datenwissenschaftler, Business-Analyst und Machine-Learning-Ingenieur. Die meisten Unternehmen, die Data-Science-Positionen anbieten, suchen nach Bewerbern mit einer Kombination aus technischen Fähigkeiten und einer Fähigkeit, Daten zu interpretieren und in geschäftliche Ergebnisse umzuwandeln.

Gefällt mir (0)
Kommentar

Python in der Data Sciene - Darum ist es unverzichtbar

15.03.2023 | von Patrick Fischer, M.Sc., Gründer & Data Scientist: FDS

Python ist heutzutage ein unverzichtbares Werkzeug in der Data Science und hat sich als eine der führenden Programmiersprachen für Data Science und Machine Learning etabliert. Hier sind einige Gründe, warum Python so wichtig für die Data Science ist:

Einfachheit und Flexibilität: Python ist eine einfach zu erlernende Sprache und bietet eine klare und konsistente Syntax, die eine schnelle Entwicklung und Prototypisierung von Data-Science-Anwendungen ermöglicht. Python ist auch flexibel und kann für eine Vielzahl von Anwendungen und Problemlösungen eingesetzt werden.

Große Auswahl an Bibliotheken und Frameworks: Python verfügt über eine umfangreiche Bibliothek von Datenanalyse- und Machine-Learning-Tools, einschließlich NumPy, Pandas, Scikit-learn, TensorFlow und Keras, die es Entwicklern ermöglichen, schnell und einfach anspruchsvolle Modelle zu erstellen und zu trainieren.

Unterstützung durch die Community: Python hat eine lebendige Entwickler-Community, die eine Vielzahl von Ressourcen, Tutorials, Foren und Bibliotheken zur Verfügung stellt. Dies erleichtert den Einstieg in die Data-Science-Entwicklung und ermöglicht es Entwicklern, schnell auf Fragen und Probleme zu reagieren.

Integrationsfähigkeit: Python kann leicht in andere Tools und Plattformen integriert werden, einschließlich SQL-Datenbanken, Hadoop und Spark, was es zu einem vielseitigen Werkzeug für die Datenanalyse macht.

Wachsende Nachfrage: Python ist eine der am schnellsten wachsenden Programmiersprachen und wird von einer wachsenden Zahl von Unternehmen und Organisationen für die Entwicklung von Data-Science-Anwendungen und Machine-Learning-Modellen verwendet.

Zusammenfassend ist Python aufgrund seiner Einfachheit, Flexibilität, großen Bibliotheken, Community-Unterstützung, Integrationsfähigkeit und wachsenden Nachfrage ein unverzichtbares Werkzeug in der Data Science.

Gefällt mir (0)
Kommentar

Unser Angebot an Sie:

Medien- und PR-Datenbank 2025

Nur für kurze Zeit zum Sonderpreis: Die Medien- und PR-Datenbank mit 2025 mit Informationen zu mehr als 21.000 Zeitungs-, Magazin- & Hörfunk-Redaktionen uvm.

Newsletter

Abonnieren Sie unseren Newsletter und erhalten Sie aktuelle Neuigkeiten & Informationen zu Aktionen: